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SUMMARY

Discontinuous Galerkin spectral element method is used to solve the lattice Boltzmann equation (LBE)
in the discrete velocity space. The triangular elements are adopted because of their �exibility to deal with
complex geometries. The �ow past a circular cylinder is simulated by the proposed scheme. The results
are consistent with those obtained from the previous numerical methods and experiments. Copyright ?
2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, the lattice Boltzmann method (LBM), as an alternative approach to solve the
�uid �ows, has aroused much attention of physics and engineering researchers. It has been
applied in various areas such as hydrodynamics, multiphase �ows and magnetohydrodynamics.
The applications of LBM are reviewed in Reference [1].
However, there are still several limitations in the use of LBM. One of them is that the classic

LBM is used only in collaboration with the uniform rectangular meshes and consequently the
complex boundaries cannot be coped with. There are mainly three remedies. The �rst is to
transform an irregular domain into a regular one by the interpolation and mapping technology.
He et al. [2] extended LBM to the non-uniform rectangular meshes. The grid information of
the density distribution function is interpolated from the square lattice. In the investigation of
the �ow past a circular cylinder [3], they mapped the circular region into a rectangular one.
The no-slip wall boundary condition was exactly enforced on the cylinder boundary, resulting
in a higher computational accuracy compared with the previous LBM simulations.
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The second is the �nite volume lattice Boltzmann method (FVLBM), which was �rst pro-
posed by Nannelli and Succi [4] and then extended to the three-dimensional (3D) case by
Xi et al. [5]. This scheme allows for implementation of LBM on the unstructured meshes
with arbitrary connectivity. The function in each element has the bilinear or trilinear form,
which reduces the computational accuracy to some degree. FVLBM has been successfully
used in the study of the �ow past a blu� body, 3D channel �ow, the shear �ow and
so on.
The third is the adaptive LBGK method [6], which is still based on the square lattice.

A local second-order grid re�nement scheme and a boundary �tting scheme were proposed in
Reference [6]. It is helpful to improve the resolving ability of the curved boundary and the
computational accuracy in the regions where large gradients of solution are expected.
Among above methods, we prefer the unstructured mesh for its �exibility to deal with com-

plex boundary. We found that low order accurate schemes may introduce excessive arti�cial
dissipation in the solution. Therefore, we employ the spectral element method that has the
exponential convergence. The discontinuous Galerkin method [7–10] is chosen because it is
very suitable for parallel computations.

2. NUMERICAL METHODS

2.1. Lattice Boltzmann method

Unlike traditional numerical schemes based on the discretization of macroscopic continuum
equations, the Boltzmann equation is established from the microscopic perspective. Actually,
the Navier–Stokes equation is the second-order approximation of the Boltzmann equation.
Because the Boltzmann equation describes the evolution of the density distribution function,
in some sense it reveals that the �uid motion is another type of particle motion. In this section,
we will describe the discrete form of the Boltzmann equation with a single relaxation time.
The original LBE in the discrete velocity space is given as

@fi
@t
+ ei · ∇fi=�i (1)

where fi is the density distribution function, ei is the streaming velocity in the ith direction in
the phase space, i=1; 2; : : : ; N , and �i represents the collation operator. In the incompressible
LGBK model as described in References [11–13],

�i= − 1
��
(fi − feqi )

feqi is the local equilibrium distribution, � is the single relaxation time, and � is the small
parameter which is proportional to the Knudsen number. The GBK approximation greatly
simpli�es the form of collation operator and makes the computation more e�cient. In the
simulation, feqi is taken as

feqi =�wi

(
1 +

3
c2
ei · u+ 9

2c4
(ei · u)2 − 3u2

2c2

)
i=0; : : : ; n (2)
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where � and u are the macroscopic �uid density and velocity, respectively, which are calcu-
lated by

�=
∑
i
fi

u=
1
�
∑
i
fiei

In the 9-bit LBGK model chosen in this study, the 2D velocity in the phase space is discretized
in nine directions:

e0 = 0

ei = (cos(�(i − 1)=2; sin(�(i − 1)=2)); i=1–4

ei =
√
2(cos(�(i − 4:5)=2; sin(�(i − 4:5)=2)); i=5–8

The kinematic viscosity for the nine-speed model is �= ��=3 [14]. In Equation (2), wi equals
4
9 for i=0;

1
9 for i=1–4, and

1
36 for i=5–8.

2.2. Discontinuous Galerkin spectral element method

The discontinuous Galerkin method has many advantages. It is suitable for solving the ad-
vection equation. The evolution of information on each element depend only on the element
itself and the in�ow information from its upwind neighbouring elements. The discontinuous
Galerkin formulation for Equation (1) can be written as

(�; @tfi)e − (∇�; eifi)e +
∫
@e
�n · eifi dl=(�;�i) (3)

where the (·; ·) denotes the projection operator and �, the test function and n is the unit
outward normal vector on the surface of the element. To introduce the upwind characteristic,
the Roe �ux is used to evaluate the boundary integration in Equation (3). Fortunately, because
Equation (1) is a linear advection equation, the Roe �ux is reduced to n · eif+i , while n · ei¡0,
and n · eif−

i while n · ei¿0, where ‘+’ means the density distribution function on the upwind
element is used for the boundary integration and ‘−’ means the function on the element itself
is used. On each element, we get the ODE in each direction of ei

d
dt
Fi=L(Fi) (4)

where

Fi =
∫
e
�fi ds

L(Fi) =
∫
e
∇� · eifi ds−

∫
@e
�n · eifi dl+

∫
e
� ·�i ds
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Figure 1. Schematic diagram for the mapping from the square to the standard triangle.

Dubiner’s modi�ed triangular basis [15, 16] is chosen as the test function. In fact, they can
be considered to be de�ned on a square, and then mapped onto the standard triangle by

�=2
1 + r
1− � − 1

The mapping schematic is shown in Figure 1. Dubiner’s modi�ed triangular basis is con-
structed with interior and boundary modes as following:

i. Interior modes (i¿1: 1¡ij¡M : i + j¡N )

�ij=
(
1 + �
2

)(
1− �
2

)
P1;1i−2(�)

(
1− �
2

)i(1 + �
2

)
P2i−1;1j−1 (�)

ii. Edge modes (1¡i; 0¡i; j¡M ; i + j¡N )

�1ij =
(
1 + �
2

)(
1− �
2

)
P1;1i−2(�)

(
1− �
2

)i

�2ij =
(
1 + �
2

)(
1− �
2

)(
1 + �
2

)
P1;1j−1(�)

�3ij =
(
1− �
2

)(
1− �
2

)(
1 + �
2

)
P1;1j−1(�)

iii. Vertex modes

�1 =
(
1− �
2

)(
1− �
2

)

�2 =
(
1 + �
2

)(
1− �
2

)

�3 =
(
1 + �
2

)
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where P	;
n (x) is the nth order Jacobi polynomial in the [−1; 1], M and N are the orders of
the polynomial in two directions of the local co-ordinates respectively.
If the Gauss quadrature points are used, the integration on the element can be evaluated as

∫ ∫
e
f(x; y) dx dy=

q�−1∑
i=0

q�−1∑
j=0
f(�i; �j)Jijw

�
i w

�
j (5)

In this paper, �i and w
�
i denote the Gauss–Lobatto quadrature points and weights to P

0;0(�),
and �i, w

�
i are the Gauss–Radau quadrature points and weights to P

1;0(�). q�, q� are the
numbers in the � and � direction. Jij is the Jacobian transform matrix from the arbitrary
triangle domain to the standard triangle. However, if the sides of the triangle are straight, Jij
is constant on each element.
We can approximate the function f by the expansion over each triangular element:

f(x; y)=
∑
m

∑
n
f̂mn�mn(�(x; y); �(x; y)) (6)

where f̂mn is expansion coe�cient according to the basis function �mn. Based on Equations
(5) and (6), Equation (4) relating to f̂mn can be achieved. More details about triangle spectral
element method can be found in Reference [16].

3. FLOW PAST A CIRCULAR CYLINDER

To demonstrate the capacity of the current scheme, we perform the simulation of the �ow
past a cylinder at various Reynolds numbers.
The typical unstructured mesh is shown in Figure 2. The number of elements is 1283. The

lateral distance is 55D, where D is the diameter of the cylinder. From the centre of cylinder,
the inlet is 50D upstream and the outlet is 60D downstream. The order of the polynomial in
both directions is 5. The �ow �eld is initialized from an irrotational potential �ow. It should
be noted that the proper initial condition must be given for the method proposed in this paper,
otherwise the solution would diverge. On the domain boundary the velocity is enforced with
U =0:1 and the density functions are evaluated with the equilibrium values. On the cylinder
wall, the bounce-back rule is used to guarantee the no-slip condition. The time step must
satisfy the relation (Reference [16]):

�t60:723=(C(V; L)M 2)

where C(V; L) is related to the local wave speed V and the characteristic length L, and M is
the order of the polynomial expansion.
The drag coe�cient is de�ned as

Cd =
1

�U 2a

∮
l
(S · n) · nx dl

where a is the cylinder radius, S is the stress tensor

S= − pI+ ��(∇u+ (∇u)T)
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Figure 2. Meshes for the �ow past a circular cylinder in (a) the entire computational domain
and (b) the vicinity of the cylinder.

and nx is the streamwise component of the normal n. Note that the derivative of velocity
in the stress tensor can be conveniently and accurately obtained by the matrix-multiplication
operation.
Figure 3 depicts the pressure coe�cient distribution on the cylinder wall. The pressure p

is evaluated directly through

p= c2s�
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Figure 3. Pressure distribution on the cylinder wall at Re=20 (solid line) and Re=40 (dash line).

in 9-bit model, the sound speed cs = 1=
√
3 and the pressure coe�cient is de�ned by

Cp=(p− p∞)=0:5�U 2

From Figure 3, the distribution is not symmetrical at the front and back of the cylinder and
the location of the lowest pressure is no longer the back stagnation point. As the Reynolds
increases, it shifts from the back stagnation point farther and farther.
Figures 4 and 5 show the streamline and the vorticity contours at Re=20 and 40 when

the �ow reaches the steady state. In this Re regime there exists a steady circulation region
in the downstream of the cylinder. As the Reynolds number increases, the circulation region
expands in the lateral and downstream directions. The length of the wake, the separated angle
and the drag coe�cient are compared with the previous results in Table I. The data given by
Coutanceau and Bouard are experimental results and others are numerical ones. We can �nd
that our computational results agree well with the previous results.
According to experimental results, when the Reynolds number is larger than 49, the �ow

becomes unsteady and the Karman vortex street forms with the eddies shedding alternately
from the top and bottom of the cylinder at a constant frequency. The frequency of vortex
shedding increases with the increasing Reynolds number. The streamline and the contours of
vorticity at the time when the lift coe�cient reaches the positive peak are shown in Figures 6
and 7 respectively. There are three important parameters in the periodically oscillatory �ow:
Strouhal number, drag coe�cient and lift coe�cient.
Strouhal number is used to measure the oscillating frequency nondimensionalized by the

time scale D=U :

St=
Df
U
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Figure 4. Steady �ow past a cylinder at Re=20. (a) Streamline and (b) vorticity contours. Dash and
solid lines denote negative and positive levels, respectively.

where f is the frequency of vortex shedding. The lift coe�cient is given as

Cl =
1

�U 2a

∮
l
(S · n) · ny dl

here, ny is the y-component of n. The integration is carried out on the cylinder wall.
The frequency of lift coe�cient is half of that of drag coe�cient and vortex shedding,

since vortex shedding either from the top or from the bottom of the cylinder has the same
e�ect in the streamwise direction, but has a di�erent e�ect in the lateral direction. This
phenomenon is reported by the previous studies [21] and is also observed in our
computation.
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Figure 5. Steady �ow past a cylinder at Re=40. (a) Streamline and (b) vorticity contours. Dash and
solid lines denote negative and positive levels, respectively.

Table I. Comparison between present and previous results at Re=20 and 40.

Re Author L=a � Cd

20 Coutanceau and Bouard [17] 1.86 44.8
He and Doolen [3] 1.842 42.96 2.152

Nieuwstadt and Keller [18] 1.786 43.37 2.053
Present 1.80 42.5 1.981

40 Coutanceau and Bouard [17] 4.26 53.5
He and Doolen [3] 4.49 53.34 1.550

Nieuwstadt and Keller [18] 4.357 52.84 1.499
Present 4.38 53.6 1.472

L: the wake length, �: separation angle.
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Figure 6. Unsteady �ow past a cylinder at Re=100. (a) Streamline and (b) vorticity contour. Dash and
solid lines denote negative and positive levels, respectively.

Table II lists the Strouhal numbers, the average drag coe�cients and the amplitudes of the
lift coe�cients as compared with the previous results. The Strouhal numbers for the results
of Goldstein is evaluated by the following formula:

St=0:21
(
1− 20

Re

)

It can be found, our results are in good agreement with the others, and only the drag coe�cient
at Re=200 seems a little higher than that of Cli�er et al. [19].
In Table III, the e�ects of the expansion order are listed. The geometry parameters and the

drag coe�cient are close. However, the computation with the higher-order expansion will cost
more computer resource on the same mesh. The results proved that it is enough to expand to
the �fth order according to the mesh used in this paper.

4. CONCLUSION

In this paper, we have extended the lattice Boltzmann method to unstructured triangular meshes
for the discontinuous Galerkin spectral element method. The new scheme has been tested by
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Figure 7. Unsteady �ow past a cylinder at Re=200. (a) Streamline and (b) vorticity contour. Dash and
solid lines denote negative and positive levels, respectively.

Table II. Comparison between present and previous results at Re=100 and 200.

Re Author St Cd Cl

100 Cli� et al. [19] 1.24
Braza et al. [21] 0.16 1.28 0.3
Goldstein [20] 0.168

Present 0.161 1.29 0.32
200 Cli� et al. [19] 1.16

Braza et al. [21] 0.19 0.7–0.75
Goldstein [20] 0.189

Present 0.191 1.27 0.7

Table III. E�ects of the expansion order.

Re=20 Re=40

M L=a � Cd L=a � Cd

5 1.80 42.5 1.981 4.38 53.6 1.472
8 1.81 43.3 1.980 4.44 53.9 1.480
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the computation of the �ow past a circular cylinder and the results are consistent with the
previously reported ones. Our method has the following advantages:

1. Flexibility: It is very easy to deal with complex boundaries due to the use of unstructured
triangular meshes. Compared with the classical LBM on the square meshes, unstructured
meshes cause the slowdown of the computational speed. However, this can be compen-
sated by the advantage of unstructured meshes that the adaptive technique introduces.

2. High accuracy: The spectral element method adopted has the exponential convergence.
Although a high-order scheme leads to a higher operation count compared to low-order
ones, it proves computationally more e�cient if high accuracy is required.

3. Essentially a parallel algorithm: The spectral element method is a sort of domain de-
composition method and the discontinuous Galerkin method used allows the computation
to be performed on an element-by-element basis. Therefore the code is easy to make
parallel.
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